
This article to appear in AI Magazine, Fall 1996. 1

Immobile Robots: AI in the New Millennium
�

Brian C. Williams and P. Pandurang Nayak

NASA Ames Research Center, MS 269-2
Recom Technologies

Mo�ett Field, CA 94305 USA
E-mail: fwilliams, nayakg@ptolemy.arc.nasa.gov

Abstract

A new generation of sensor rich, massively distributed,
autonomous systems are being developed that have
the potential for profound social, environmental, and
economic change. These include networked building
energy systems, autonomous space probes, chemical
plant control systems, satellite constellations for re-
mote ecosystem monitoring, power grids, biosphere-
like life support systems, and recon�gurable tra�c
systems, to highlight but a few. To achieve high per-
formance, these immobile robots (or immobots) will
need to develop sophisticated regulatory and immune
systems that accurately and robustly control their
complex internal functions. To accomplish this, im-
mobots will exploit a vast nervous system of sensors
to model themselves and their environment on a grand
scale. They will use these models to dramatically re-
con�gure themselves in order to survive decades of
autonomous operations. Achieving these large scale
modeling and con�guration tasks will require a tight
coupling between the higher level coordination func-
tion provided by symbolic reasoning, and the lower
level autonomic processes of adaptive estimation and
control. To be economically viable they will need to
be programmable purely through high level composi-
tional models. Self modeling and self con�guration,
coordinating autonomic functions through symbolic
reasoning, and compositional, model-based program-
ming are the three key elements of a model-based au-
tonomous systems architecture that is taking us into
the New Millennium.

Introduction

The lime-light has shifted dramatically in the last few
years from an AI tradition of developing mobile robots,
to that of software agents (aka softbots) (Etzioni & Se-
gal 1992; Dent et al. 1992; Maes & Kozierok 1993;
Kautz et al. 1994; Etzioni & Weld 1994). This
is re
ected in Hollywood, which has replaced R2D2
with cyberpunk descendants of Disney's Tron as the
popular robot icon. One motivation for the shift is

�This article is based on an invited talk given at
the Third International Conference on AI Planning Sys-
tems(Williams 1996)

the di�culty and cost of developing and maintain-
ing physical robots, which are believed to substan-
tially impede progress towards AI's central goals of
developing agent architectures and a theory of ma-
chine intelligence (Etzioni & Segal 1992). As Etzioni
and Segal argue, software environments, such as a
UNIX shell and the World-Wide Web, provide soft-
bots with a set of ready-made sensors (e.g., ls and go-
pher) and end e�ectors (e.g., ftp and telnet) that
are easy to maintain, while still providing a testbed
for exploring issues of mobility and real-time con-
straints. At the same time the recent Internet gold
rush and the ensuing Web literacy has provided an
enormous textual corpus which screams for intelligent
information gathering aides (Knoblock & Levy 1995;
Levy, Rajaraman, & Ordille 1996).

Yet, two concerns have been raised about using soft-
ware agents as a research testbed and application do-
main. First, softbots often operate in an environment
lacking the rich constraints that stem from noisy, ana-
log sensors and complex non-linear e�ectors, so fun-
damental to physical environments. Can such a soft-
ware environment adequately drive research on agent
kernels? Second, given that much of the information
on the Internet is textual, will oft-envisioned softbot
applications, such as information gathering and syn-
thesis, be viable before the hard nut of language un-
derstanding has been cracked?

In this article we argue that the information gath-
ering capabilities of the Internet, corporate intranets,
and smaller networked computational systems sup-
ply additional testbeds for autonomous agents of a
very di�erent sort. These testbeds, which we call im-
mobile robots (or immobots), have the richness that
comes from interacting with physical environments, yet
promise the ready availability associated with the net-
worked software environment of softbots. Potential im-
mobile robots include networked building energy sys-
tems, autonomous space probes, chemical plant control
systems, satellite constellations for ecosystem monitor-
ing, power grids, biosphere life support systems, and
recon�gurable tra�c systems. Conversion of these and
other real time systems to immobile robots will be a

driving force for profound social, environmental, and
economic change. The power of a term like robot,
mobot, or softbot is the way in which it sets free our
imagination. The purpose of this article is to see where
the immobot metaphor can take us, from science �c-
tion, to fundamental AI insights, to signi�cant appli-
cations.

We argue that the focus of attention of immobile
robots is directed inward, toward maintaining their
internal structure, as opposed to traditional robots,
whose focus is on exploring and manipulating their ex-
ternal environment. This inward direction focuses the
immobot on the control of its complex internal func-
tions such as sensor monitoring and goal tracking, pa-
rameter estimation and learning, failure detection and
isolation, fault diagnosis and avoidance, recovery and
sa�ng. Metaphorically speaking, the main functions of
an immobot correspond to the human nervous, regu-
latory, and immune systems, rather than the naviga-
tion and perceptual systems being mimicked in mobile
robots.

Finally, we argue that these immobots give rise to a
new family of autonomous agent architectures, called
model-based autonomous systems. Three properties of
such systems are central. First, to achieve high perfor-
mance, immobots will need to exploit a vast nervous
system of sensors to model themselves and their envi-
ronment on a grand scale. They will use these models
to dramatically recon�gure themselves in order to sur-
vive decades of autonomous operations. Hence, self-
modeling and self-con�guration comprise an essential
executive function of an immobot architecture. Sec-
ond, to achieve these large scale modeling and con�gu-
ration functions, an immobot architecture will require
a tight coupling between the higher level coordination
function provided by symbolic reasoning, and the lower
level autonomic processes of adaptive estimation and
control. Third, to be economically viable immobots
will have to be programmable purely from high level
compositional models, supporting a \plug and play"
approach to software and hardware development.

The above properties of a model-based autonomous
system are embodied in two implemented systems,
Moriarty (Williams & Millar 1996) and Livingstone
(Williams & Nayak 1996). Livingstone provides a ker-
nel for controlling the immune system of immobile
robots, while Moriarty provides part of the kernel for
controlling an immobot's regulatory system. Our work
on these systems fuses together research from such di-
verse areas of AI as model-based reasoning, qualitative
reasoning, planning and scheduling, execution, propo-
sitional satis�ability, concurrent reactive languages,
Markov processes, model-based learning, and adap-
tive systems. Moriarty and Livingstone are grounded
in two immobot testbeds. Moriarty was part of the
Responsive Environment (Zhang, Williams, & Elrod
1993; Elrod et al. 1993), an intelligent building con-
trol system developed within the Ubiquitous Comput-

ing project at Xerox PARC. Livingstone is part of the
Remote Agent , a goal-directed, fully autonomous con-
trol architecture, which will
y NASA's Deep Space
One space probe in 1998 (Pell et al. 1996a). At least
one of these immobots has the promise of signi�cant
impact at the very beginning of the New Millennium.

Examples of Immobile Robots

Hardware advances in cheap single chip control and
communication processors, sensors, point actuators,
analog to digital converters, and networking has en-
abled a new category of autonomous system that is sen-
sor rich, massively distributed, and largely immobile.
This technology is being quickly embedded in almost
every form of real time system, from networked build-
ing energy systems to spacecraft constellations. The
current generation of these hybrid hardware/software
systems has created a slumbering giant whose potential
has only begun to be tapped. Furthermore they o�er
a diverse set of ready-made immobile robot testbeds,
just waiting to be exploited by AI researchers.
The potential of this technology captured the imag-

ination of Hollywood in the 60's, with such movies
as 2001: A Space Odyssey, The Forbin Project, The
Andromeda Strain, and the Star Trek episode, Spock's
Brain. The most famous computational intelligence,
the HAL9000 computer, and the most famous biologi-
cal intelligence, Spock, were both for a time immobile
robots. In this article we use HAL and Spock as start-
ing points for two immobile robot futures.

HAL9000

In the movie 2001, HAL is the �rst of a new genera-
tion of computers with unprecedented intelligence and

awless behavior. HAL is characterized as the single
mission element with the greatest responsibility, the
\brain and central nervous system" of a spacecraft tar-
geted for Jupiter.
It may seem puzzling to call HAL an immobot; after

all he travels from Earth to Jupiter in 18 months, mak-
ing him the fastest manmade artifact of his time. How-
ever, traditional mobile robots typically focus on their
external environment and on the tasks of navigation
and obstacle avoidance. The movie, on the other hand,
portrays HAL with an extreme sense of immobility.
The camera zooms in for long periods on HAL's opti-
cal sensors, which are attached to walls throughout the
spaceship. HAL's actuators are also extremely limited;
examples include the opening and closing of doors, and
the raising and lowering of beds. The distribution of
these sensors and actuators throughout the spacecraft
compensates for their immobility, giving HAL a sense
of omnipresence. HAL's attention is focused inward
throughout the movie. This is highlighted by the char-
acterization of HAL as the \brain and central nervous
system" of the spacecraft, as opposed to the naviga-
tor and pilot. HAL's major responsibility is to look
after the health of the spacecraft and crew, including

2

monitoring the spacecraft's health, performing fault di-
agnosis and repair, operating the life support systems,
and continuously monitoring the medical status of crew
members in hibernation. Finally, the movie highlights
the connection between HAL's higher level symbolic
reasoning and the complex, low level, autonomic pro-
cesses distributed throughout the spacecraft. Hence
HAL can be thought of as the spacecraft's immune
system.

The New Millennium program

While many aspects of 2001 now seem farfetched, the
current future of space exploration is no less exciting.
With the creation of the New Millennium program in
1995, NASA has put forth the challenge of establishing
a \virtual presence" in space through an armada of
intelligent space probes that autonomously explore the
nooks and crannies of the solar system:

With autonomy we declare that no sphere is o�
limits. We will send our spacecraft to search be-
yond the horizon, accepting that we cannot di-
rectly control them, and relying on them to tell
the tale. { Bob Rasmussen, Cognizant Engineer,
Cassini Mission.

This \presence" is to be established at an Apollo-
era pace, with software for the �rst probe to be deliv-
ered in mid-1997, leaving only a year and a half for
development, and the probe (Deep Space One) to be
launched in mid-1998. The additional constraint of
low cost is of an equal magnitude. Unlike the billion
dollar Galileo and Cassini missions with hundreds of
members in their
ight operations team, New Millen-
nium missions are to cost under $100 million with only
tens of
ight operators. The eventual goal is a $50
million spacecraft operated by a mere handful of peo-
ple. Achieving these goals will require autonomy and
robustness on an unprecedented scale.
The �nal challenge, spacecraft complexity, is equally

daunting. Consider Cassini, NASA's state of the
art spacecraft headed for Saturn. Cassini's \nervous
system" includes a sophisticated networked, multi-
processor system, consisting of two
ight computers
that communicate over a bus to more than two dozen
control units and drivers. These establish complex
sensing and control paths to an array of �xed sensors
and actuators, including inertial reference units, sun
sensors, pressure sensors, thrusters, main engines, re-
action wheels and heaters. The most complex is the
main engine subsystem, consisting of a web of redun-
dant pipes, valves, tanks, and engines that o�er excep-
tional levels of recon�gurability. Coordinating these
complicated, hybrid systems poses signi�cant techni-
cal hurdles.
Together, the goals of the New Millennium program

pose an extraordinary opportunity and challenge for
AI. As with HAL, our challenge is to provide the im-
mune system for this type of immobile robot over the
lifetime of its mission.

Spock's Brain

A second example of an immobile robot from 60's Hol-
lywood comes from a little known episode of the orig-
inal Star Trek series, called \Spock's Brain." In this
episode Spock's body is found robbed of its brain by
an unknown alien race, and the crew of the Enterprise
embarks upon a search of the galaxy in order to re-
unite Spock's brain and body. Spock detects that he
has a new body that stretches into in�nity, and which
appears to be breathing, pumping blood and main-
taining physiological temperature. When discovered,
Spock's brain is found to be within a black box, tied
in by light rays to a complex control panel. Instead
of breathing, maintaining temperature and pumping
blood, he is recirculating air, running heating plants
and recirculating water. That is, the function that re-
quires this supreme intelligence is the regulation of a
planet-wide heating and ventilation system.
As with HAL, Spock's body in this case is extremely

immobile. The episode portrays an immobile robot as
a massively distributed behemoth, su�cient to encircle
a globe. Again the crucial link between high level rea-
soning (i.e., Spock's brain) and autonomic processes is
highlighted. Finally, while 2001 highlights HAL's func-
tion as an immune system that maintains the health of
the immobot, this episode highlights Spock's function
as a regulatory system, performing high �delity control
of the immobot's internal organs. A regulatory sys-
tem provides an e�cient metabolism, supplying cen-
tral resources e�ciently, equitably distributing these
resources throughout the system, consuming these re-
sources e�ciently, and attenuating the e�ects of dis-
turbances.

The Responsive Environment

The concept in Spock's Brain is not as implausible as
it might seem. In fact it is quickly becoming a reality
through a con
uence of forces (Figure 1). First is the
broad installation of the new generation of networked
building management systems. These are networked
multi-processor systems containing hundreds to thou-
sands of processors that allow high �delity sensing and
control throughout a building. They will enable sys-
tems that are far more energy e�cient, and at the same
time improve indoor air quality. Second is the intercon-
nection of building and home utilities through optical
�ber networks. This has lead to several commercial
alliances between members of the utility and telecom-
munication industries. Third is the deregulation of the
utilities, and the ensuing establishment of computer-
based energy markets. These allow peak and average
electrical rates to be
uidly adjusted, enabling more
even and stable balancing of the energy load. Tech-
nologies for storing energy within buildings during o�
peak hours will enable even greater stability and e�-
ciency. The rapid deployment of these networked con-
trol technologies has already generated a multibillion
dollar growth in the service industries for remote build-

3

Figure 1: Immobots of unprecedented size are being developed in the area of building energy management. Key
elements include networked building control systems, optical networks that connect buildings on a power grid to
multiple power production facilities, deregulatation of the power industry, and the establishment of a dynamic
energy market.

ing monitoring and maintenance. But the potential of
these immobile robots for optimal energy e�cient con-
trol has yet to be tapped.
These are only two of an ever increasing collection of

immobile robot testbeds being constructed. NASA's
Earth observing system is moving towards a level of
sensing that will enable full Earth ecosystem model-
ing, providing insight into problems of pollution, global
warming, and ozone depletion. Vast networked control
systems are generating a revolution in chemical pro-
cessing, factory automation, drug manufacturing, and
semiconductor fabrication, producing immobile robots
that enable substantial improvements in quality, e�-
ciency and safety.
These are not far o� dreams. Many government and

private institutions, such as NASA, PG&E, Rockwell
Automation, Echelon, Hewlett Packard and Johnson
Controls, are aggressively embracing these technologies
as fundamental to their future in the new millennium,
that is, in the immediate future. The two immobot
testbeds discussed in this article represent �rst steps
towards these future visions.

Immobot Characteristics

From these examples we can extract a number of prop-
erties that distinguish immobots from their mobile
robot and softbot siblings, both in terms of their phys-
ical structure and their most salient functions. Struc-

turally, immobots are massively distributed, physically
embedded, autonomous systems with a large array of
simple, �xed location sensors and actuators. Function-
ally an immobot's primary task is to control its mas-
sive regulatory, immune, and nervous systems through
a coupling of high-level reasoning, to adaptive auto-
nomic processes. More speci�cally, an immobot has
the following distinctive features:

Physically Embedded An immobot's sensors and
actuators operate on the physical world, many of
which operate in noisy environments. Immobots
need to react in real-time; however, the timescale
of the reaction time can vary dramatically. For ex-
ample, a spacecraft may have to act instantaneously
to close o� a leaking thruster, but then may have
weeks during its cruise to perform a self diagnosis.

Immobile An immobot's sensors and actuators reside
at �xed locations, and are largely limited to one di-
mensional signals and one degree of freedom move-
ment. Examples include light sensors, window blind
actuators, gyroscopes, valves, and reaction wheels.
While an immobot's hardware is often redundant
and highly recon�gurable, the primitive elements of
interaction that are used to build a con�guration
are simple and �xed. In contrast, a traditional robot
typically has a set of complex mobile sensors and ac-
tuators, such as 3D vision systems and articulated
hands, arms, and legs.

4

Omnipresent The lack of sensor and actuator mobil-
ity is compensated for by their sheer number. A
spacecraft has dozens of sensors and actuators, a
building can have on the order of thousands. Sen-
sors and actuators must reside a priori in all loca-
tions that the immobot wants to model or a�ect,
giving the immobot the potential for being contin-
uously aware of all aspects of its environment. In
contrast, a mobile robot's few precious sensors and
actuators must be navigated to the point where they
are needed. The omnipresence of the immobot shifts
the bottleneck from the expense of gathering each
piece of information, to the integration of a contin-
uous stream of data.

Massively Distributed & Tightly Coupled

Computation is distributed along lengthy commu-
nication paths, with increasingly complex computa-
tion being performed at sites near sensors and ac-
tuators. For example, in Cassini, a complex set of
physical and software processes work together in or-
der to �re an engine { the
ight computer turns on an
engine by sending a command over a bus to a com-
munication processor, which tells a driver to open
two valves, which causes fuel to
ow into the engine,
where combustion occurs. These properties lead to
distributed sensing and control problems of high di-
mensionality due to tight couplings between internal
components. This high dimensionality makes these
problems extremely di�cult to solve.

Self-Absorbed Mobile robots and softbots focus
largely on what is occurring in the world outside
the \bot," including navigating around obstacles,
moving through networks to databases, and chang-
ing navigation paths due to external failures. On
the other hand, an immobile robot's attention is
largely directed inward toward monitoring the inter-
nal health of its network (immunology) and recon-
�guring its components or control policies to achieve
robust performance (regulation). While some rea-
soning is directed outward, the external world is not

uid in the same sense as for classical robots.

One of a Kind Ironically what binds together immo-
bile robots is that no two are alike. Drug manufac-
turing lines, Disney's space mountain, car factories,
Mars rovers, Earth orbiting satellites, deep space
probes, and Antarctic biospheres, are each one of
a kind devices, making it di�cult to amortize their
development costs. The dilemma is how to cost ef-
fectively build these one of a kinds, while providing
high performance and reliability.

Controlling Immobots

In the preceding sections we argued that the dominant
function of an immobot is to control its massive reg-
ulatory, immune, and nervous systems through a cou-
pling of high-level reasoning with adaptive autonomic
processes. Providing a regulatory and immune system

involves a broad set of tasks, including those listed in
Figure 2.

� parameter
estimation

� monitoring

� mode con�rmation

� goal tracking

� detecting anomalies

� isolating faults

� diagnosing causes

� calibration

� adaptive control

� control policy coordina-
tion

� hardware recon�guration

� fault recovery

� standby

� sa�ng

� fault avoidance

Figure 2: Tasks performed to maintain the immobots
regulatory and immune systems.

Writing software to control the immune and regula-
tory systems of an immobot is di�cult for a variety of
reasons. First, it often requires the programmer to rea-
son through system-wide interactions to perform the
appropriate function. For example, diagnosing a failed
thruster requires reasoning about the interactions be-
tween the thrusters, the attitude controller, the star
tracker, the bus controller, and the thruster valve elec-
tronics. The complexity of these interactions can lead
to cognitive overload, causing suboptimal decisions and
even outright errors. Furthermore, the one of a kind
nature of immobots means that the cost of reasoning
through system-wide interactions cannot be amortized,
and must be paid over again for each new immobot.
Second, the need for fast reactions in anomalous sit-

uations has led to a tradition of precomputing all re-
sponses. However, immobots often operate in harsh
environments over decades, so that explicitly enumer-
ating responses to all possible situations quickly be-
comes intractable. Tractability is usually restored with
the use of simplifying assumptions such as using local
suboptimal control laws, assuming single faults, ignor-
ing sensor information, or ignoring subsystem interac-
tions. Unfortunately, this results in systems that are
either brittle or grossly ine�cient.
Finally, the autonomic processes of an immobot in-

volve a broad range of discrete, continuous, and soft-
ware behaviors, including control laws, Kalman �l-
ters, digital hardware commands, and software drivers.
This range of behaviors needed by an immobot makes
it very di�cult and expensive to both manually synthe-
size high �delity autonomic processes and couple these
autonomic processes to high-level symbolic reasoning.

Model-based Autonomous Systems

The goal of our research program is to solve the above
di�culties by developing a model-based autonomous
system kernel for maintaining the regulatory and im-
mune systems of immobots. The kernel that we

5

are driving towards is de�ned by three desiderata:
model-based programming, model-based reactive execu-
tion, and model-based hybrid systems.
Our work on immobots originated with work on

interaction-based design (Williams 1990), which ex-
plored the coordination and construction of continuous
interactions, as a design task that involves the addition
of novel hardware device topologies. In contrast model-
based autonomy explores the coordination of hardware
and software interactions using a digital controller.

Model-based Programming

A model-based autonomous system addresses the dif-
�culty of reasoning about system-wide interactions us-
ing model-based programming. Model-based program-
ming is based on the idea that the most e�ective way
to amortize software development cost is to make the
software plug and play. To support plug and play,
immobots are programmed by specifying component
models of hardware and software behaviors. A model-
based autonomous system combines component mod-
els to automate all reasoning about system wide in-
teractions necessary to synthesize real-time behaviors
like the ones in Figure 2. The development of model
libraries is used to reduce design time, facilitate reuse,
and amortize modeling costs.
The application of a stringent qualitative modeling

methodology is used to reduce both modeling time
and the sensitivity to model inaccuracies and hard-
ware changes. Our experience and those of others
(Hamscher 1991; Malik & Struss 1996) has shown that
extremely weak qualitative representations, e.g., rep-
resenting only deviations from nominal behavior, are
quite su�cient for many model-based autonomy tasks.
Counter to the folklore of the �eld (Sacks & Doyle
1992), ambiguity and intractable branching has not
proven to be a signi�cant practical issue.
Model-based programming on a large-scale is sup-

ported by developing languages, compilers, debuggers,
and visualization tools that incorporate classical con-
cepts of object-oriented, procedural, and hierarchical
abstractions into the modeling language.

Model-based Reactive Execution

The di�culty of precomputing all responses means
that a model-based autonomous system must use its
models to synthesize timely responses to anomalous
and unexpected situations at execution time. Further-
more, the need to respond correctly in time critical
and novel situations means that it must perform de-
liberative reasoning about the model within the reactive
control loop. While the list of tasks that the model-
based execution system must support is seemingly di-
verse (Figure 2), they divide into two basic functions:
self modeling and self con�guration.

Self Modeling Identifying anomalous and unex-
pected situations, and synthesizing correct responses

in a timely manner requires an immobot to be self-
modeling. While parts of its model are provided a
priori using model-based programming, other parts
need to be adapted or elaborated using sensor infor-
mation. Self modeling tasks include tracking model
parameters over time (e.g., base line voltages), track-
ing changes in component behavioral modes (e.g., a
valve going from open to closed, and then to stuck
closed), and elaborating quantitative details of qual-
itative models (e.g., learning a quantitative pipe
model, given that
ow is proportional to the pres-
sure drop). Self modeling tasks are listed in the left
hand column of Figure 2; all but estimation, mon-
itoring and calibration involve identifying discrete
behavioral modes of the immobot's components.

Self Con�guration To provide immune and regula-
tory systems, an immobot must be self-con�guring;
it must dynamically engage and disengage compo-
nent operating modes and adaptive control policies
in response to changes in goals, the immobot's in-
ternal structure, and the external environment. The
right hand column of Figure 2 lists tasks that involve
self-con�guration. The �rst two items involve co-
ordinating or adjusting continuous control policies,
while the remainder involve changes in component
behavioral modes.

Model-based Hybrid Systems

Given the wide range of digital, analog, and soft-
ware behaviors exhibited by an immobot, developing a
model-based approach for coordinating the immobot's
autonomic processes requires a rich modeling language
and reasoning methods that go well beyond those tra-
ditionally used in qualitative and model-based diag-
nosis. More speci�cally, a model-based autonomous
system must be able to represent and reason about:

Concurrent software Coordinating, invoking, and
monitoring real-time software requires formal speci-
�cations of their behavior. These are modeled by in-
corporating formal speci�cations of concurrent tran-
sition systems into the model-based programming
language. Concurrent transitions systems provides
an adequate formal semantics for most concurrent
real-time languages (Manna & Pnueli 1992).

Continuous adaptive processes Achieving high �-
delity requires the merging of symbolic model-based
methods with novel adaptive estimation and con-
trol techniques (e.g., neural nets). Speci�cations of
adaptive processes must be combined with speci�-
cations of discrete concurrent behavior within the
models. For high-level reasoning systems that coor-
dinate adaptive processes, the most suitable speci�-
cation of the adaptive processes are often qualitative.

Stochastic processes Inherent to supporting an im-
mobot's regulatory and immune functions is the
modeling and control of stochastic events that oc-
cur within an immobot's components. This stochas-

6

tic behavior is modeled by extending the concurrent
transition system model, mentioned above, to mod-
eling concurrent, partially observable Markov pro-
cesses.

The previous three subsections outlined the key re-
quirements for model-based autonomy. The essential
property that makes these requirements manageable
is the relative immobility of our robots. The system
interactions are relatively �xed and known a priori
through the component models and their interconnec-
tion. The
exibility within the system is largely lim-
ited to changes in component modes and control poli-
cies, and adjustments to parameter values. In the rest
of this article we consider two implemented systems
that exploit immobility to achieve the above desider-
ata. They form two major components of a kernel we
envision for maintaining the regulatory and immune
systems of immobots.

Responsive Environments

The scenario in \Spock's brain" of a heating and cool-
ing system on a planetary scale highlighted three as-
pects of immobile robots that we will examine techni-
cally in this section. First is the task of maintaining a
massive, high performance regulatory system. Second
is the need by this system to acquire and adapt accu-
rate models of itself and its environment, in order to
achieve high performance. Third is the need for high
level reasoning to coordinate a vast set of autonomic
processes during adaptive modeling and regulation.
As a stepping stone towards this ambitious scenario,

we developed a testbed for �ne grained sensing and
control of a suite of o�ces at Xerox PARC, called
the responsive environment (Elrod et al. 1993). This
testbed includes a networked control system for the
complete building, plus �fteen model o�ces each of
which has been enhanced with a networked micropro-
cessor that controls an array of sensors and actuators.
These include sensors for occupancy, light-level, tem-
perature, pressure and air
ow, and actuators for reg-
ulating air temperature and air
ow.
The heart of the building is the central plant, which

generates air
ow, and cold and hot water through a
fan, chiller and boiler, respectively. The extremities
of the building are the hundred or more o�ces, whose
temperature must be carefully regulated. The veins
and arteries of the building are the pipes and duct work
that deliver air and water to the extremities, where
they are used to regulate temperature. The connec-
tion between the central plant and a single o�ce, used
for cooling, is shown in Figure 3. O�ce temperature
is controlled through heat
ow in or out of the o�ce.
This includes heat
owing from the sun and equipment,
through the walls and doorways, and via the air duct.
Heat
ow into an o�ce is controlled via the air duct
in two ways. The amount of air
ow is controlled by
a damper, that partially blocks air
ow. The temper-
ature of the air is changed by blowing the air over a

radiator like device, called a reheat, that contains hot
or cold water. The
ow rate of the water is controlled
by the reheat valve position.
What makes regulating a building di�cult is the

overwhelming number of control variables and the fact
that the control variables are highly coupled. For ex-
ample, the energy consumption of the fan and chiller
are nonlinear functions of the fan speed and the change
from outside to inside temperature. The optimal set-
ting of the damper and reheat valve, then depend on
the outside temperature and the demands that other
o�ces are placing on the chiller and fan. Hence the
performance of all the o�ces are coupled. This is ex-
acerbated by the slow response time of o�ce temper-
ature change, which makes a trial and error approach
to global control extremely unstable.
We solve this problem with a gradient descent con-

troller that uses a global model to adaptively predict
where the optima lies. An informal evaluation using
the responsive environment testbed suggests that en-
ergy savings in excess of 30% are conceivable with help
from model-based control (Zhang, Williams, & Elrod
1993).
Generic thermal models are available for complete

buildings (e.g., the DOE2 simulator models) that suf-
�ce for this type of control. These models are ex-
tremely rich, including not only the building's hard-
ware and nonlinear thermal characteristics, but sun-
light and shading, external weather, and the occu-
pants' desires. They have on the order of thousands
of equations for buildings with one hundred or more
o�ces.
The labor intensive task is tailoring this model to

the speci�cs of a building, which requires estimating
numerical values for parameters, like thermal conduc-
tance through the walls, heat output of the equipment,
and thermal capacity of the o�ce air space. An im-
mobot can estimate its parameters by adjusting their
values until the model best �ts the sensor data. More
precisely, given sensed variables y and x (a vector),
and a vector of parameters p, we �rst construct an es-
timator f from the model, that predicts y given x and
p:

y = f(x;p)

Next, given a set of (x; y) data D, estimating p using
least squares �t of f to y involves solving the optimiza-
tion problem:

p
� = argmin

p

X
hyi;xii2D

(yi � f(xi;p))
2

Such an estimate is performed by an adaptive numer-
ical algorithm that can be viewed as one of the im-
mobot's autonomic processes.
There are far too many parameters in a building

model to estimate all of them at once. Instead the
immobile robot must automate a control engineer or
modeler's expertise at breaking a model into a set of

7

optimal
control

s u

p
Chiller

FSPLYFan
TEXTTRM

XDMPR

TSPLY

XRHT

(model parameters)

thermal
model

Figure 3: Model-based air conditioning of a single o�ce, using air blown over pipes that contain a
ow of chilled
water.

tractable parameter estimation tasks1, and then co-
ordinating and combining their results. This coordi-
nation represents the link between high-level reason-
ing and autonomic processes in our self modeling im-
mobot. An army of modelers is employed for large
scale tasks, such as earth ecosystem modeling, at great
cost. This armymust be automated for many immobile
robot tasks, if high performance and robustness is to
be achieved. Moriarty automates key aspects of how a
community of modelers decompose, simplify, plan and
coordinate large scale model estimation tasks, through
a technique called decompositional, model-based learn-
ing (DML).

Coordinating Adaptive Model Estimation

When decomposing a model into a set of estimation
tasks there is often a large set of possible estimators
(y = f(x;p)) to choose from, and the number of pa-
rameters contained in each estimator varies widely.
Moriarty decomposes a model into a set of \simplest"
estimators that minimize the dimensionality of the
search space and the number of local minima, hence
improving learning rate and accuracy. Each estimator
together with the appropriate subset of sensor data
forms a primitive estimation action. Moriarty then
plans the ordering and coordination of information
ow
between them.
To estimate the parameters for a single o�ce, Mo-

riarty starts with a thermal model consisting of four-
teen equations involving seventeen state variables and

1To achieve tractability a modeler of nonlinear physical
systems will typically search for estimators containing four
or less parameters.

eleven parameters. About a third of the equations are
nonlinear, such as:

Fdmpr =

�
�dmpr (Xdmpr)

Rdct

�p
Pdct

which relates air
ow through the damper to duct pres-
sure and duct air resistance as a function of damper po-
sition. Nine of the state variables are sensed, including
temperature T ,
ow rate F , air pressure P , damper
and reheat valve position X. Seven of the eleven pa-
rameter values are unknown and must be estimated by
Moriarty.
Moriarty's task is to generate an estimation plan

from the thermal model. Moriarty, when brought up
to full capability will be able to generate the plan in
Figure 4 (it currently generates less e�cient plans). In
terms of the immobot metaphor, each octagon in the
�gure represents an adaptive, autonomic estimation
process, and the plan graph represents higher level co-
ordination. Each octagon in the diagram is an estima-
tion action that is de�ned by an estimator y = f(x;p),
applied to a subset of the sensor data. The estimator
is constructed from a subset of the model. The arc
going into the action speci�es additional parameters
whose values are already known, and the arc leaving
the action speci�es parameters whose values have been
determined by the estimation. For example, the top
octagon, labeled \air
ow", produces an estimate for
parameter Rdct, the air resistance in the duct. It per-
forms this estimate using the following estimator for
Fext,

Fext = (�lkg + �dmpr(Xdmpr))

p
Pdct

Rdct8

Air-Flw

Rht-Std Rht-Trn

Rm-Nght-Std

Rm-Nght-Trn

Rm-Day-Trn

Rdct

Qrhtmax Crht

Rwall , Qeqp

Crm

Qslr

Rwall

Qeqp

Figure 4: Model-estimation plan for a single o�ce.

derived using three equations in the o�ce model per-
taining to air
ow. This action does not take any pa-
rameter values as input (�lkg and �dmpr (Xdmpr) are
known a priori as constants).
Consider a common sense account of how the estima-

tion plan is generated. Moriarty constructs this plan
by generating a set of possible estimation actions from
the model. It then selects and sequences a subset of
the actions su�cient to cover all parameters. Actions
are generated in two steps. In the �rst step subsets
of the model and sensors are identi�ed that are suf-
�ciently constrained to form an estimation problem.
For example, the \air
ow" action described above was
generated from the pressure Pdct and air
ow sensors
F , together with the following air
ow equations:

Fext = Flkg + Fdmpr

Flkg =

�
�lkg

Rdct

�p
Pdct

Fdmpr =

�
�dmpr(Xdmpr)

Rdct

�p
Pdct

Two additional actions, \Rht" and \Rm", are created
from the set of temperature and heat
ow equations,
by using the duct air temperature sensor to split the
set into reheat and room submodels. The �rst action,
\Air Flw" involves the single parameter Rdct, action
\Rht" involves the two parameters Qrhtmax and Crht,
and \Rm" involves the four parameters, Rwall, Qeqp,
Crm, and Qslr(t). Moriarty's �rst step generates eight
possible estimation actions in total, each containing
between one and seven parameters. \Air Flw", \Rht"
and \Rm" are three actions that cover all seven model
parameters and contain the fewest parameters individ-
ually. The fact that the sets of parameters in these
actions are disjoint is purely coincidental.
An additional step, under development, produces

one or more simpli�ed versions of each estimation ac-
tion by identifying conditions on the data such that

in
uences by one or more parameters becomes negli-
gible. For example, consider the estimator for action
\Rm":

dTrm

dt
=

C0Fsply (Tsply � Trm)

Crm

+

Qeqp + Qslr(t) +Rwall (Text � Trm)

Crm

This estimator can be simpli�ed by noticing that so-
lar e�ect Qslr(t) is negligible at night time, when the
sun is down (action \Rm-Nght"), while it is signi�-
cant during the day (action \Rm-Day-Trn"). Action
\Rm-Nght" is generated from \Rm" by restricting the
data set to data taken at night. This allows Qslr(t) to
be eliminated, reducing the number of parameters in
the estimator from four to the three parameters Rwall,
Qeqp, and Crm.
Furthermore, the e�ect of the room heat capac-

ity Crm is negligible when the room temperature is
in steady state (\Rm-Nght-Std"), while it becomes
particularly signi�cant during room temperature tran-
sients (\Rm-Nght-Trn"). Hence action \Rm-Nght-
Std" is generated from the simpli�ed action \Rm-
Nght", by further restricting the data set to data where
dTrm
dt

is small. This allows the term dTrm
dt

Crm to be
eliminated from the estimator and reduces the number
of parameters from three to two. Applying this simpli-
�cation process to the �rst three of the eight actions
generated in the �rst step results in the six primitive
estimation actions shown in Figure 4.
Having generated these estimation actions, sequenc-

ing exploits the fact that some of these estimation ac-
tions share parameters, in order to further reduce the
dimensionality of the search performed by each action.
In particular, the output of an estimation action with
fewer unknown parameters, such as \Rm-Nght-Std", is
passed to an overlapping action with more parameters,
such as \Rm-Nght". This reduces the number of un-
known parameters estimated in the second action; for

9

example, \Rm-Nght" is left only with Crm as an un-
known. This approach produces the sequence shown in
Figure 4. Each action estimates at most two unknown
parameters, a dramatic reduction from the seven un-
known parameters in the original problem.

Technically, in the �rst step Moriarty decomposes a
model into an initial set of estimation actions by ex-
ploiting an analogy to the way in which model-based
diagnosis decomposes and solves large scale multiple
fault problems. The decomposition of a diagnostic
problem is based on the concept of a con
ict|a mini-
mal subset of a model (typically in propositional or �rst
order logic) that is inconsistent with the set of observa-
tions (de Kleer & Williams 1987; Reiter 1987). Mori-
arty's decompositional learning method is based on the
analogous concept of a dissent|aminimal subset of an
algebraic model that is overdetermined given a set of
sensed variables (i. e., a dissent is just su�cient to in-
duce an error function). The set of three
ow equations
used earlier to construct the \Air
w" estimator is an
example of a dissent. Following this analogy Moriarty
uses a dissent generation algorithm (Williams & Mil-
lar 1996) that parallels the con
ict recognition phase
of model-based diagnosis.

Moriarty's simpli�cation step (currently under de-
velopment), is based on an order of magnitude simpli-
�cation method, called caricatural modeling, (Williams
& Raiman 1994). Caricatural modeling partitions a
model into a set of operating regions in which some be-
haviors dominate and others become negligible. Mori-
arty applies caricatures to each estimation action gen-
erated in the �rst step, using the action's estimator
as the model. Each operating region generated corre-
sponds to a simpli�ed estimation action; the operating
region's model is the simpli�ed estimator, and the op-
erating region's boundary description provides a �lter
on data points for that estimator. In the thermal ex-
ample, one of many simpli�cations to our estimator for
\Rm" is to minimize Qslr(t). Since Qslr(t) � 0 for all
data at night, this simpli�cation can be used. In the
�nal step, sequencing selects and orders primitive esti-
mation actions using an algorithm that greedily min-
imizes the unknown parameters in each estimator, as
described in (Williams & Millar 1996).

Consider Moriarty's performance on the example,
where the simpli�cation step hasn't been performed
(Figure 5). Moriarty generates the eight estimators,
F1{F8, in the �rst step, and immediately sequences
them to produce hF2; F1; F6i, which corresponds to
the
ow reheat and room estimation actions, given ear-
lier. We compare the performance of the eight estima-
tors by running them against sensor data sets rang-
ing in size from 10 to 200, shown above. The y axis
denotes time required to converge on a �nal estimate
of parameters involved in the dissent. The plot la-
beled F7 is for the original seven dimensional estima-
tor, while plots F2, F1, and F6 are the three estima-
tors in Moriarty's sequence. Higher dimensional esti-

mators, like F7, tend to fail to converge given arbi-
trary initial conditions, hence ball-park initial param-
eter estimates were supplied to allow convergence in
the higher dimensional cases. Decomposition leads to
signi�cant speed-up even when good initial estimates
were available. For example, at trial size 200, the origi-
nal estimator requires 166 seconds, while the total time
to estimate all parameters using F2, F1, and F6 is un-
der 9 seconds. This represents a speed up by a factor
of 14.
In addition the sequence requires less data to con-

verge. This is important for self-modeling immobile
robots, which use online estimation to quickly track
time-varying parameters. Employing the rule of thumb
that the data set size should be roughly ten fold the
dimension of the parameter space, F7 would require
around 70 data points, while the F2, F1, F6 sequence
requires only 40. The anomalous slow down in the con-
vergence rate of F7 at 25 data points is attributed to
insu�cient data. Finally, although not included, pa-
rameter accuracy, measured by the con�dence interval
of each parameter is also improved using the generated
sequence.
To summarize, a model-based approach is essen-

tial for regulating systems of the size of most immo-
bile robots. Embodying an immobile robot with self-
modeling capabilities requires the use of symbolic rea-
soning to coordinate a large set of autonomic estima-
tion processes. This coordination mimics the way in
which a community of modelers decomposes, simpli�es
and coordinates modeling problems on a grand chal-
lenge scale. DML automates one aspect of this rich
model decomposition and analysis planning process.

The New Millennium Program

HAL in 2001 highlights four aspects of the immune
system of an immobile robot that we examine techni-
cally in this section. First is the ability to monitor in-
ternal health, detecting and isolating failing functions,
processes and components. Second is the ability to
continually recon�gure the low level autonomic pro-
cesses of an immobot, establishing intended functions
and working around failures in a cost e�cient and reli-
able manner. Third is the ability to reason extensively
through recon�guration options while ensuring reac-
tivity. Fourth is the ability to reason about hybrid
systems.

Livingstone

We have developed a system called Livingstone2 to in-
vestigate these issues in the context of NASA's New
Millennium program. Livingstone is a fast, reactive,

2Livingstone, the program, is named after David Living-
stone (1813-1873), the 19th century medical missionary and
explorer. Like David Livingstone, Livingstone the program
is concerned with exploration and the health of explorers.

10

• • • •
•

• •

•

Trial size

C
ov

er
ge

nc
e

T
im

e
(s

ec
on

ds
)

0 50 100 150 200

0
50

10
0

15
0

•

•

•

•

•
•

•

•

• • • • • • • •• • • • • •
• •

• • • •
•

•

•
•

• • • •
• •

• •

• • • • • • • •• • • • • • • •

F8

F7

F6
F5

F4

F3

F2
F1

Figure 5: Convergence rate vs data size for the generated estimators F1{F8.

Helium
tank

Propellant
tanks

Main
engines

Valve

Pyro valve

Regulator

Legend

Figure 6: Schematic of the Cassini main engine subsystem. In the valve con�guration shown, the engine on the left
is �ring.

model-based con�guration manager. Using a hierarchi-
cal control metaphor, Livingstone sits at the nexus be-
tween the high-level feedforward reasoning of classical
planning/scheduling systems, and the low-level feed-
back response of continuous adaptive control methods,
providing a kernel for model-based autonomy. Living-
stone is distinguished from more traditional robotic
executives through the use of deliberative reasoning
in the reactive feedback loop. This deliberative rea-
soning is compositional, model-based, can entertain an
enormous search space of feasible solutions, and yet is
extremely e�cient due to the ability to quickly focus
on the few solutions that are near optimal.

Three technical features of Livingstone are partic-
ularly worth highlighting. First, the approach uni�es
the dichotomy within AI between deduction and re-
activity (Agre & Chapman 1987; Brooks 1991). We
achieve a reactive system that performs signi�cant de-
duction in the sense/response loop by drawing on our
past experience at building fast propositional con
ict-
based algorithms for model-based diagnosis, and by
framing a model-based con�guration manager as a
propositional feedback controller that generates fo-
cused, optimal responses. Second, Livingstone's rep-
resentation formalism achieves broad coverage of hy-
brid discrete/continuous, software/hardware systems

11

by coupling the concurrent transition system models
underlying concurrent reactive languages (Manna &
Pnueli 1992) with the qualitative representations de-
veloped in model-based reasoning. Third, the long
held vision of model-based reasoning has been to use
a single central model to support a diversity of engi-
neering tasks. For model-based autonomous systems
this means using a single model to support a variety of
execution tasks including tracking planner goals, con-
�rming hardware modes, recon�guring hardware, de-
tecting anomalies, isolating faults, diagnosis, fault re-
covery, and sa�ng. Livingstone automates all these
tasks using a single model and a single core algorithm,
thus making signi�cant progress towards achieving the
model-based vision.

Con�guration management

To understand the role of a con�guration manager,
consider Figure 6. It shows a simpli�ed schematic of
the main engine subsystem of Cassini, the most com-
plex spacecraft built to date. It consists of a helium
tank, a fuel tank, an oxidizer tank, a pair of main en-
gines, regulators, latch valves, pyro valves, and pipes.
The helium tank pressurizes the two propellant tanks,
with the regulators acting to reduce the high helium
pressure to a lower working pressure. When propellant
paths to a main engine are open, the pressurized tanks
force fuel and oxidizer into the main engine, where they
combine and spontaneously ignite, producing thrust.
The pyro valves can be �red exactly once, i.e., they
can change state exactly once, either from open to
closed or vice versa. Their function is to isolate parts of
the main engine subsystem until needed, or to isolate
failed parts. The latch valves are controlled using valve
drivers (not shown), and an accelerometer (not shown)
senses the thrust generated by the main engines.
Starting from the con�guration shown in the �gure,

the high-level goal of producing thrust can be achieved
using a variety of di�erent con�gurations: thrust can
be provided by either main engine, and there are a
number of di�erent ways of opening propellant paths
to either main engine. For example, thrust can be
provided by opening the latch valves leading to the en-
gine on the left, or by �ring a pair of pyros and open-
ing a set of latch valves leading to the engine on the
right. Other con�gurations correspond to various com-
binations of pyro �rings. The di�erent con�gurations
have di�erent characteristics since pyro �rings are ir-
reversible actions and since �ring pyro valves requires
signi�cantly more power than opening or closing latch
valves.
Suppose that the main engine subsystem has been

con�gured to provide thrust from the left main engine
by opening the latch valves leading to it. Suppose that
this engine fails, e.g., by overheating, so that it fails to
provide the desired thrust. To ensure that the desired
thrust is provided even in this situation, the spacecraft
must be transitioned to a new con�guration in which

thrust is now provided by the main engine on the right.
Ideally, this is achieved by �ring the two pyro valves
leading to the right side, and opening the remaining
latch valves (rather than �ring additional pyro valves).
A con�guration manager constantly attempts to

move the spacecraft into lowest cost con�gurations that
achieve a set of high-level dynamically changing goals,
such as the goal of providing nominal thrust. When
the spacecraft strays from the chosen con�guration due
to failures, the con�guration manager analyzes sen-
sor data to identify the current con�guration of the
spacecraft, and then moves the spacecraft to a new
con�guration which, once again, achieves the desired
con�guration goals. In this sense a con�guration man-
ager like Livingstone is a discrete control system that is
strategically situated between high-level planning and
low-level control; it ensures that the spacecraft's con-
�guration always achieves the set point de�ned by the
con�guration goals.

Model-based con�guration management

Livingstone is a reactive con�guration manager that
uses a compositional, component-based model of the
spacecraft to determine con�guration actions (see Fig-
ure 7). Each component is modeled as a transition
system that speci�es the behaviors of operating and
failure modes of the component, nominal and failure
transitions between modes, and the costs and like-
lihoods of transitions (see Figure 8). Mode behav-
iors are speci�ed using formulas in propositional logic,
while transitions between modes are speci�ed using
formulas in a restricted temporal, propositional logic.
The restricted propositional temporal logic is adequate
for modeling digital hardware, analog hardware us-
ing qualitative abstractions (Weld & de Kleer 1990;
de Kleer & Williams 1991), and real-time software
using the models of concurrent reactive systems in
(Manna & Pnueli 1992). The spacecraft transition sys-
tem model is a composition of its component transi-
tion systems in which the set of con�gurations of the
spacecraft is the cross-product of the sets of component
modes. We assume that the component transition sys-
tems operate synchronously, i.e., for each spacecraft
transition every component performs a transition.
A model-based con�guration manager uses its tran-

sition system model to both identify the current con-
�guration of the spacecraft, called mode identi�cation
(MI), and to move the spacecraft into a new con�g-
uration that achieves the desired con�guration goals,
called mode recon�guration (MR). MI incrementally
generates all spacecraft transitions from the previous
con�guration such that the models of the resulting
con�gurations are consistent with the current obser-
vations (see Figure 9). MR determines the commands
to be sent to the spacecraft such that the resulting
transitions put the spacecraft into a con�guration that
achieves the con�guration goal in the next state (see
Figure 10). The use of a spacecraft model in both MI

12

MI MR

Planner
Executive

Configuration
goalsConfirmation

CommandsObservations

Configuration
Manager

High-level
goals

Model

Figure 7: Model-based reactive con�guration management.

Open
1

Close
1

0.01

0.01

0.01

0.01

Open

Closed Stuck closed

Stuck open

Nominal transition
with cost

Failure transition
with probability

Figure 8: Transition system model of a valve. \Open" and \Closed" are normal operating modes, while \Stuck
open" and \Stuck closed" are failure modes. The \Open" command has unit cost and causes a mode transition
from \Closed" to \Open." Similarly for the \Close" command. Failure transitions move the valve from the normal
operating modes to one of the failure modes with probability 0.01.

Previous configuration

Possible current
configurations with

observation "no thrust"

Figure 9: Mode identi�cation. The �gure shows a situation in which the left engine is �ring normally in the
previous state, but no thrust is observed in the current state. MI's task is to identify the con�gurations into
which the spacecraft has transitioned, that account for this observation. The �gure shows two possible transitions,
corresponding to one of the main engine valves failing \stuck closed" (failed valves are circled). Many other
transitions, including more unlikely double faults, can also account for the observations.

13

Possible next
configurations that

provide "nominal thrust"

Current configuration

Figure 10: Mode recon�guration. The �gure shows a situation in which MI has identi�ed a failed main engine valve
leading to the left main engine. MR reasons that normal thrust can be restored in the next state if an appropriate
set of valves leading to the right engine are opened. The �gure shows two of the many con�gurations that achieve
the desired goal (circled valves are commanded to change state). Transitioning to the con�guration at the top has
lower cost since only necessary pyro valves are �red. The valves leading to the left engine are turned o� to satisfy
a constraint that at most one engine may �re at one time.

Number of components 80
Average modes/component 3.5
Number of propositions 3424
Number of clauses 11101

Table 1: Newmaap spacecraft model properties.

and MR ensures that con�guration goals are achieved
correctly.

Both MI and MR are reactive. MI infers the current
con�guration from knowledge of the previous con�g-
uration and current observations. MR only consid-
ers commands that achieve the con�guration goal in
the next state. Given these commitments, the deci-
sion to model component transitions as synchronous is
key. An alternative is to model multiple component
transitions through interleaving. However, this can
place an arbitrary distance between the current con�g-
uration and a goal con�guration, defeating the desire
to limit inference to a small �xed number of states.
Hence we model component transitions as being syn-
chronous. If component transitions in the underlying
hardware/software are not synchronous, our modeling
assumption is still correct as long as some interleaving
of transitions achieves the desired con�guration.

In practice, MI and MR need not generate all tran-
sitions and control commands, respectively. Rather,
just the most likely transitions and an optimal control
command are required. We e�ciently generate these
by recasting MI and MR as combinatorial optimiza-
tion problems. In this reformulation, MI incremen-

tally tracks the likely spacecraft trajectories by always
extending the trajectories leading to the current con-
�gurations by the most likely transitions. MR then
identi�es the command with the lowest expected cost
that transitions from the likely current con�gurations
to a con�guration that achieves the desired goal. We
e�ciently solve these combinatorial optimization prob-
lems use a con
ict-directed best-�rst search algorithm.
See (Williams & Nayak 1996) for a formal characteri-
zation of MI and MR and a description of the search
algorithm.

A quick trip to Saturn

Following the announcement of the New Millennium
program in early 1995, spacecraft engineers from JPL
challenged a group of AI researchers at NASA Ames
and JPL to demonstrate, within the short span of �ve
months, a fully autonomous architecture for spacecraft
control. To evaluate the architecture the JPL engi-
neers de�ned the Newmaap spacecraft and scenario
based on Cassini. The Newmaap spacecraft is a scaled
down version of Cassini that retains the most challeng-
ing aspects of spacecraft control. The Newmaap sce-
nario is based on the most complex mission phase of

14

Scenario MI MR
Check Accept Time Check Time

EGA preaim failure 7 2 2.2 4 1.7
BPLVD failed 5 2 2.7 8 2.9
IRU failed 4 2 1.5 4 1.6
EGA burn failure 7 2 2.2 11 3.6
Acc failed 4 2 2.5 5 1.9
ME too hot 6 2 2.4 13 3.8
Acc low 16 3 5.5 20 6.1

Table 2: Results from the seven Newmaap failure recovery scenarios. Time is in seconds on a Sparc 5.

Cassini|successful insertion into Saturn's orbit even
in the event of any single point of failure.

The AI researchers, working closely with the space-
craft engineers, developed an autonomous agent ar-
chitecture that integrates Livingstone with the HSTS
planning and scheduling system (Muscettola 1994) and
a multi-threaded smart executive (Pell et al. 1996b)
based on RAPS (Firby 1995). In this architecture (see
(Pell et al. 1996a) for details) HSTS translates high-
level goals into partially-ordered tokens on resource
timelines. The executive executes planner tokens by
translating them into low-level spacecraft commands
while enforcing temporal constraints between tokens.
Livingstone tracks spacecraft state and planner to-
kens, and recon�gures for failed tokens. The above
autonomous agent architecture was demonstrated to
successfully navigate the simulated Newmaap space-
craft into Saturn orbit during its one hour insertion
window, despite about half a dozen failures. Conse-
quently, Livingstone, HSTS, and the smart executive
have been selected to
y Deep Space One, forming the
core autonomy architecture of NASA's New Millen-
nium program.

Table 1 provides summary information about Liv-
ingstone's model of the Newmaap spacecraft, demon-
strating its complexity. The Newmaap demonstration
included seven failure scenarios. From Livingstone's
viewpoint, each scenario required identifying likely fail-
ure transitions using MI and deciding on a set of con-
trol commands to recover from the failure using MR.
Table 2 shows the results of running Livingstone on
these scenarios.

The �rst column names each of the scenarios; a dis-
cussion of the details of these scenarios is beyond the
scope of this article. The second and �fth columns
show the number of solutions checked by MI and
MR, respectively. On can see that even though the
spacecraft model is large, the use of con
ict-directed
search dramatically focuses the search. The third col-
umn shows the number of leading trajectory exten-
sions identi�ed by MI. The limited sensing available
on the Newmaap spacecraft often makes it impossible
to identify unique trajectories. The fourth and sixth
columns show the time spent by MI and MR on each
scenario, once again demonstrating the e�ciency of our

approach.

The new millennium

We are only now becoming aware of the rapid construc-
tion of a ubiquitous, immobile robot infrastructure,
that rivals the construction of the world-wide web, and
has the potential for profound social, economic, and
environmental change. Tapping into this potential will
require embodying immobots with sophisticated reg-
ulatory and immune systems that accurately and ro-
bustly control their complex internal functions. De-
veloping these systems requires fundamental advances
in model-based autonomous system architectures that
are self-modeling, self-con�guring, model-based pro-
grammable, and support deliberated reactions. This
can only be accomplished through a coupling of the
diverse set of high-level, symbolic methods and adap-
tive autonomic methods o�ered by AI. While a mere
glimmer of Spock and HAL, our two model-based im-
mobots, Livingstone and Moriarty, provide seeds for
an exciting new millennium.

Acknowledgements

We would like to thank the many individuals who have
in
uenced this work. Oren Etzioni's provocative 1992
Spring Symposium talk on softbots provided a cat-
alyst. Thanks to the responsive environment team,
particularly Bill Millar, Joseph O'Sullivan, and Ying
Zhang. Thanks to our Remote Agent collaborators, in-
cluding James Kurien, Nicola Muscettola, Barney Pell,
Greg Swietek, Douglas Bernard, Steve Chien, Erann
Gat, and Reid Simmons. Finally, thanks to Yvonne
Clearwater for help with the graphics.

References

Agre, P., and Chapman, D. 1987. Pengi: An imple-
mentation of a theory of activity. In Proceedings of
AAAI-87, 268{272.

Brooks, R. A. 1991. Intelligence without reason. In
Proceedings of IJCAI-91, 569{595.

de Kleer, J., and Williams, B. C. 1987. Diagnosing
multiple faults. Arti�cial Intelligence 32(1):97{130.

de Kleer, J., and Williams, B. C., eds. 1991. Arti�cial
Intelligence, volume 51. Elsevier.

15

Dent, L.; Boticario, J.; McDermott, J.; Mitchell, T.;
and Zabowski, D. 1992. A personal learning appren-
tice. In Proceedings of AAAI-92, 96{103.

Elrod, S.; Hall, G.; Costana, R.; Dixon, M.; and des
Rivieres, J. 1993. Responsive o�ce environments.
Communications of the ACM 36(7):84{85.

Etzioni, O., and Segal, R. 1992. Softbots as testbeds
for machine learning. In AAAI Spring Symposium on
Knowledge Assimilation.

Etzioni, O., and Weld, D. 1994. A softbot-based in-
terface to the internet. Communications of the ACM
37(7):72{79.

Firby, R. J. 1995. The RAP language manual. Ani-
mate Agent Project Working Note AAP-6, University
of Chicago.

Hamscher, W. C. 1991. Modeling digital circuits for
troubleshooting. Arti�cial Intelligence 51:223{271.

Kautz, H.; Selman, B.; Coen, M.; Ketchpel, S.; and
Ramming, C. 1994. An experiment in the design of
software agents. In Proceedings of AAAI-94, 438{443.

Knoblock, C. A., and Levy, A. Y., eds. 1995. Work-
ing Notes of the AAAI Spring Symposium Series on
Information Gathering in Distributed and Heteroge-
neous Environments.

Levy, A. Y.; Rajaraman, A.; and Ordille, J. J. 1996.
Query answering algorithms for information agents.
In Proceedings of AAAI-96, 40{47.

Maes, P., and Kozierok, R. 1993. Learning interface
agents. In Proceedings of AAAI-93, 459{465.

Malik, A., and Struss, P. 1996. Diagnosis of dynamic
systems does not necessarily require simulation. In
Proceedings of the Tenth International Workshop on
Qualitative Reasoning, AAAI Technical Report WS-
96-01, 127{136.

Manna, Z., and Pnueli, A. 1992. The Temporal Logic
of Reactive and Concurrent Systems: Speci�cation.
Springer-Verlag.

Muscettola, N. 1994. HSTS: Integrating planning
and scheduling. In Fox, M., and Zweben, M., eds.,
Intelligent Scheduling. Morgan Kaufmann.

Pell, B.; Bernard, D. E.; Chien, S. A.; Gat, E.;
Muscettola, N.; Nayak, P. P.; Wagner, M. D.; and
Williams, B. C. 1996a. A remote agent prototype
for spacecraft autonomy. In Proceedings of the SPIE
Conference on Optical Science, Engineering, and In-
strumentation.

Pell, B.; Gat, E.; Keesing, R.; and Muscettola, N.
1996b. Plan execution for autonomous spacecraft.
In Proceedings of the 1996 AAAI Fall Symposium on
Plan Execution.

Reiter, R. 1987. A theory of diagnosis from �rst
principles. Arti�cial Intelligence 32(1):57{96.

Sacks, E. P., and Doyle, J. 1992. Prolegomena to any
future qualitative physics. Computational Intelligence
8(2):187{209.

Weld, D. S., and de Kleer, J., eds. 1990. Readings in
Qualitative Reasoning About Physical Systems. San
Mateo, California: Morgan Kaufmann Publishers,
Inc.

Williams, B. C., and Millar, B. 1996. Automated
decomposition of model-based learning problems. In
Proceedings of the Tenth International Workshop on
Qualitative Reasoning, AAAI Technical Report WS-
96-01, 265{273.

Williams, B. C., and Nayak, P. P. 1996. A model-
based approach to reactive self-con�guring systems.
In Proceedings of AAAI-96, 971{978.

Williams, B. C., and Raiman, O. 1994. Decompo-
sitional modeling through caricatural reasoning. In
Proceedings of AAAI-94, 1199{1204.

Williams, B. C. 1990. Interaction-based invention:
Designing novel devices from �rst principles. In Pro-
ceedings of AAAI-90, 349{356.

Williams, B. C. 1996. Model-based autonomous sys-
tems in the new millennium. In Proceedings of the
Third International Conference on Arti�cial Intelli-
gence Planning Systems (AIPS-96), 275{282.

Zhang, Y.; Williams, B. C.; and Elrod, S. 1993. Model
estimation and energy-e�cient control for building
management systems. Technical report, Xerox PARC.

16

